일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Meta AI
- cvpr 논문 리뷰
- 자기지도학습
- ssl
- Prompt란
- active learning
- deep learning
- Self-supervised learning
- contrastive learning
- Segment Anything 설명
- iclr 2024
- 컴퓨터비전
- Computer Vision 논문 리뷰
- deep learning 논문 리뷰
- VLM
- object detection
- Segment Anything 리뷰
- Data-centric AI
- Computer Vision
- Stable Diffusion
- 논문 리뷰
- 논문리뷰
- Prompt Tuning
- CVPR
- cvpr 2024
- Multi-modal
- Data-centric
- iclr 논문 리뷰
- ai 최신 논문
- Segment Anything
- Today
- Total
목록Prompt Tuning (2)
Study With Inha
Segment Anything in High Quality, ETH Zurich 논문링크: https://arxiv.org/abs/2306.01567 Segment Anything in High QualityThe recent Segment Anything Model (SAM) represents a big leap in scaling up segmentation models, allowing for powerful zero-shot capabilities and flexible prompting. Despite being trained with 1.1 billion masks, SAM's mask prediction quality falls short inarxiv.org Introduction올해 상..
ECCV 2022, Visual Prompt Tuning, M. Jia et al. 논문 링크: https://arxiv.org/pdf/2203.12119.pdf 1. Introduction 최근 GPT 계열 모델과 같이 대규모 데이터와 대규모 모델을 활용한 딥러닝 연구가 많아졌다. 그러한 데이터의 경우 엔비디아나 구글과 같이 엄청난 컴퓨팅 파워를 가지고 있는 대기업이 아닌 일반인들은 Pretrain된 모델을 Fine-tuning하는 것도 어려운 상황에 이르렀다 :( 따라서 본 논문에서는 비전 분야에서 대규모 Transformer 모델을 효율적으로 활용하기 위한 새로운 fine-tuning 방법인 Visual Prompt Tuning (VPT)을 제안한다. 이는 기존의 fine-tuning 방법보다 더 ..