일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Data-centric
- ai 최신 논문
- ssl
- iclr 논문 리뷰
- Data-centric AI
- CVPR
- Segment Anything
- iclr spotlight
- cvpr 2024
- Self-supervised learning
- cvpr 논문 리뷰
- Computer Vision
- deep learning 논문 리뷰
- 논문리뷰
- Prompt Tuning
- deep learning
- Multi-modal
- Meta AI
- iclr 2024
- Prompt란
- Segment Anything 설명
- Computer Vision 논문 리뷰
- 자기지도학습
- Stable Diffusion
- Segment Anything 리뷰
- 논문 리뷰
- contrastive learning
- active learning
- VLM
- ICLR
- Today
- Total
목록Segment Anything 설명 (2)
Study With Inha
Segment Anything in High Quality, ETH Zurich 논문링크: https://arxiv.org/abs/2306.01567 Segment Anything in High QualityThe recent Segment Anything Model (SAM) represents a big leap in scaling up segmentation models, allowing for powerful zero-shot capabilities and flexible prompting. Despite being trained with 1.1 billion masks, SAM's mask prediction quality falls short inarxiv.org Introduction올해 상..
Meta AI, Segment Anything, Alexander Kirillov et al.논문 링크: https://ai.facebook.com/research/publications/segment-anything/ (SAM 후속 논문 리뷰 링크) Meta AI, SAM 2: Segment Anything in Images and Videos 논문 리뷰 및 SAM2 설명 [Paper Review] Meta AI, SAM 2: Segment Anything in Images and Videos 논문 리뷰 및 SAM2 설명Meta FAIR SAM 2: Segment Anything in Images and Videos SAM2 설명 및 논문 리뷰Paper: SAM2 Paper LinkDemo: https..