일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- iclr 논문 리뷰
- CVPR
- deep learning 논문 리뷰
- ai 최신 논문
- 논문 리뷰
- cvpr 논문 리뷰
- cvpr 2024
- VLM
- 자기지도학습
- Stable Diffusion
- Segment Anything 설명
- ssl
- Data-centric AI
- Computer Vision
- object detection
- Prompt Tuning
- contrastive learning
- 논문리뷰
- Multi-modal
- Computer Vision 논문 리뷰
- Meta AI
- Data-centric
- Segment Anything
- iclr 2024
- Self-supervised learning
- active learning
- deep learning
- 컴퓨터비전
- Segment Anything 리뷰
- Prompt란
- Today
- Total
목록컴퓨터비전 (2)
Study With Inha
⚽ GOAL 2020 ~ 2023 사이에 활발하게 이루어진 연구들의 개념을 알아본다 각 개념의 대표적인 논문들을 간단하게 소개하여 연구의 흐름을 알아본다 이를 통해서 본인 연구/개발에서 써 볼만한 insight를 얻어갔으면 하는 마음.. 🙈 Unsupervised Learning : input data have no corresponding classifications or labeling examples Clustering (K-means…) Visualization and Dimensionality Reduction (PCA, t-SNE) 🙉 Semi-Supervised Learning : use a small set of input-output pairs and another set of only ..
Core-set: Active Learning for Convolutional Neural Networks 논문 링크: https://arxiv.org/abs/1708.00489 Active Learning for Convolutional Neural Networks: A Core-Set Approach Convolutional neural networks (CNNs) have been successfully applied to many recognition and learning tasks using a universal recipe; training a deep model on a very large dataset of supervised examples. However, this approach i..