일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- ssl
- Segment Anything
- 자기지도학습
- Segment Anything 설명
- Multi-modal
- Stable Diffusion
- 논문 리뷰
- Data-centric AI
- iclr 2024
- cvpr 논문 리뷰
- Prompt Tuning
- ICLR
- CVPR
- Computer Vision
- 논문리뷰
- cvpr 2024
- Computer Vision 논문 리뷰
- Data-centric
- ai 최신 논문
- Prompt란
- active learning
- contrastive learning
- iclr 논문 리뷰
- Meta AI
- deep learning 논문 리뷰
- iclr spotlight
- deep learning
- Segment Anything 리뷰
- Self-supervised learning
- VLM
- Today
- Total
목록Vision (2)
Study With Inha

⚽ GOAL 2020 ~ 2023 사이에 활발하게 이루어진 연구들의 개념을 알아본다 각 개념의 대표적인 논문들을 간단하게 소개하여 연구의 흐름을 알아본다 이를 통해서 본인 연구/개발에서 써 볼만한 insight를 얻어갔으면 하는 마음.. 🙈 Unsupervised Learning : input data have no corresponding classifications or labeling examples Clustering (K-means…) Visualization and Dimensionality Reduction (PCA, t-SNE) 🙉 Semi-Supervised Learning : use a small set of input-output pairs and another set of only ..

Core-set: Active Learning for Convolutional Neural Networks 논문 링크: https://arxiv.org/abs/1708.00489 Active Learning for Convolutional Neural Networks: A Core-Set Approach Convolutional neural networks (CNNs) have been successfully applied to many recognition and learning tasks using a universal recipe; training a deep model on a very large dataset of supervised examples. However, this approach i..